Host Resistance to Intracellular Infection: Mutation of Natural Resistance-associated Macrophage Protein 1 (Nramp1) Impairs Phagosomal Acidification
نویسندگان
چکیده
The mechanisms underlying the survival of intracellular parasites such as mycobacteria in host macrophages remain poorly understood. In mice, mutations at the Nramp1 gene (for natural resistance-associated macrophage protein), cause susceptibility to mycobacterial infections. Nramp1 encodes an integral membrane protein that is recruited to the phagosome membrane in infected macrophages. In this study, we used microfluorescence ratio imaging of macrophages from wild-type and Nramp1 mutant mice to analyze the effect of loss of Nramp1 function on the properties of phagosomes containing inert particles or live mycobacteria. The pH of phagosomes containing live Mycobacterium bovis was significantly more acidic in Nramp1- expressing macrophages than in mutant cells (pH 5.5 +/- 0.06 versus pH 6.6 +/- 0.05, respectively; P <0.005). The enhanced acidification could not be accounted for by differences in proton consumption during dismutation of superoxide, phagosomal buffering power, counterion conductance, or in the rate of proton "leak", as these were found to be comparable in wild-type and Nramp1-deficient macrophages. Rather, after ingestion of live mycobacteria, Nramp1-expressing cells exhibited increased concanamycin-sensitive H+ pumping across the phagosomal membrane. This was associated with an enhanced ability of phagosomes to fuse with vacuolar-type ATPase-containing late endosomes and/or lysosomes. This effect was restricted to live M. bovis and was not seen in phagosomes containing dead M. bovis or latex beads. These data support the notion that Nramp1 affects intracellular mycobacterial replication by modulating phagosomal pH, suggesting that Nramp1 plays a central role in this process.
منابع مشابه
Natural Resistance to Intracellular Infections
Mutations at the natural resistance-associated macrophage protein 1 (Nramp1) locus cause susceptibility to infection with antigenically unrelated intracellular pathogens. Nramp1 codes for an integral membrane protein expressed in the lysosomal compartment of macrophages, and is recruited to the membrane of phagosomes soon after the completion of phagocytosis. To define whether Nramp1 functions ...
متن کاملNatural Resistance to Infection with Intracellular Pathogens: The Nramp1 Protein Is Recruited to the Membrane of the Phagosome
The Nramp1 (natural-resistance-associated macrophage protein 1) locus (Bcg, Ity, Lsh) controls the innate resistance or susceptibility of mice to infection with a group of unrelated intracellular parasites which includes Salmonella, Leishmania, and Mycobacterium. Nramp1 is expressed exclusively in professional phagocytes and encodes an integral membrane protein that shares structural characteri...
متن کاملThe Ity/Lsh/Bcg locus: natural resistance to infection with intracellular parasites is abrogated by disruption of the Nramp1 gene
In mice, natural resistance or susceptibility to infection with intracellular parasites is determined by a locus or group of loci on chromosome 1, designated Bcg, Lsh, and Ity, which controls early microbial replication in reticuloendothelial organs. We have identified by positional cloning a candidate gene for Bcg, Nramp1, which codes for a novel macrophage-specific membrane transport protein....
متن کاملHost-pathogen interactions: Host resistance factor Nramp1 up-regulates the expression of Salmonella pathogenicity island-2 virulence genes.
Nramp1 (Natural resistance-associated macrophage protein-1; also known as Slc11a1) is a host resistance gene that provides protection against several intracellular pathogens, including Salmonella enterica serovar Typhimurium. Little is known about the dynamic interplay that occurs between mammalian host resistance determinants such as Nramp1 and pathogens during infection. To explore these inte...
متن کاملNramp1-functionality increases iNOS expression via repression of IL-10 formation.
In mice, resistance to certain intracellular microbes depends on the expression of a late phagosomal protein termed natural-resistance associated macrophage protein 1 (Nramp1, Slc11a1). Nramp1-functionality is associated with alterations of cellular iron homeostasis and a sustained pro-inflammatory immune response, including the formation of the antimicrobial effector molecule NO. To investigat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Experimental Medicine
دوره 188 شماره
صفحات -
تاریخ انتشار 1998